
Atmospheric Entry – Geometry Shader
BRIAN VAN HYFTE

Research

Introduction
When an object enters the atmosphere, it heats up due to friction with particles. This effect is called

atmospheric drag or aerodynamic heating. Because of the velocity needed to generate the effect,

there is no footage of it up close, making it harder to recreate. What we do know, is that it creates a

trail of fire behind it.

We will be trying to recreate this. Most notably the surface heating up, and the trail of fire behind it.

This effect has been recreated in the game Kerbal Space Program, which is what I will try to

reproduce.

Effect
The effect for the shader can be broken down into 4 major pieces. The object heating up, creating an

orange-red hue on the surface of the object, a trail of fire bouncing off the front of the object and

following it, the smoke followed by the trail of fire, and small chunks of debris flying off the object.

The smoke and debris are easily done in a particle system, and thus will not be included in this

shader. We will be focussing on the fire trail, and the surface heating.

Surface heating

This is a simple effect we can achieve with a pixel shader. We’ll have to ensure that surfaces directly

exposed to friction are hotter (more white) than surfaces with an angle (more red). Density of the

atmosphere could also play a role in how fast a surface heats up. There are 2 ways I could establish

this effect. I can use the dot product of the surface, to check if the surface is in line with the

airstream. Based on the angle, I can heat a surface up. I would have to use shadow mapping to

ensure it only happens to directly exposed surfaces however, and when testing this, there would be

issues with hard edges, as some surfaces had sharp angles. Another way easier technique is to

simply place an orange light along the velocity vector.

Trail

This will be the main bulk of the shader. We’ll have to use a geometry shader to extrude planes

along the airstream, whilst ensuring it is only happening to surfaces directly exposed to the

airstream that are on the edge of the object. We could achieve this with something similar to god

rays. We could use a silhouette shader to determine the edge of the model. The developers of KSP

generated a shadow map along the airstream to determine if a plane is exposed to it.

Silhouette shader

Using a silhouette shader, we could determine the edge of the model, and use this

information to extrude planes. However, when researching, I found that most silhouette

shaders don’t only show the edge of the model from a certain perspective, but rather

highlight all the edges of the model. This is not what we want, we only want the outline of

the model from the airstream’s “perspective”. There are probably ways to achieve this, but

the shadow map way seemed to be more straight forward, as I already had implementations

for this in the engine.

 Shadow mapping

When using shadow mapping, instead of generating a shadow map from the perspective of

the light, we use the perspective of the airstream. We can use this information to check if an

area is directly exposed. Combine this with a dot product, and we have a way to know what

planes to extrude.

Implementation

Pass 1 – Surface heating
We start off with the pixel shader. For the sake of this demo, I will implement specular, diffuse and

ambient lighting. You can easily expand the shader to support normal mapping, environment

mapping, etc. However, for this demo, those are not necessary.

For specular, we just use the phong algoritm.

We calculate the entry heat by simply adding these 2 together. However, we run into an issue:

planes not directly exposed can still light up. To fix this, we use the generated shadow map from the

airstream’s perspective. To calculate the shadow, we use the following function.

This function will return 1 if a surface is completely exposed, and a 0 if it isn’t. Depending on angle, it

can be between those values as well. Knowing this, we can use this value as a multiplier on our entry

heat, as any surface directly exposed will just multiply by 1, but any surface not exposed will just

multiply by 0, thus putting entry heat at 0. This is not the only thing we want to multiply our entry

heat with though, we want some variables to work with. First off, we use an intensity variable set by

the user. This can be used if an atmosphere is denser. Secondly, we want to multiply it with the

velocity, as objects with higher velocities will accumulate more heat.

This is the resulting code, combined with a global light and the ambient lighting.

And here you can see the effect in the engine.

We can play around with the intensity to have a bigger heat effect, but this will do.

Pass 2 – Fire trail
This will be the main bulk of the shader, and the geometry shader. The biggest challenge is to ensure

the trail only gets extruded on edges. To do this, we will use the shadow map we generated earlier

to see if a vertex is directly exposed to the airstream again. This time, we will also have to consider

the surface’s normal and the airstream vector. There should only be an effect if the vertex is

occluded, but the angle also must be lower than, or equal to 90°. Here’s a diagram explaining it

Let’s dissect the image:

• Purple arrow: Velocity vector

• Green hexagon: Object entering atmosphere

• Black edge: Occluded on shadow map

• Blue stripes: Normal on vertex (will probably be average on actual model)

• Red circle: Vertices that get extrudes

So, what exactly happens in this situation? The front 2 points (p1 and p4) both meet the occlusion

requirements. However, angle between the velocity vector and their normals is larger than 90°.Thus

these vertices do not get extruded. If we look at the outer points (p2 and p3), these points both

also meet the occlusion requirement. If we average the normals, it will form a 90° angle with the

velocity vector, thus these vertices will be extruded. The other points are not occluded, so they

will not be extruded either.

This is the basic principle. Let’s look at the implementation.

We will treat our shader on an edge basis, instead of a vertex-by-vertex basis. This way we can easily

extrude an edge, and we won’t run into issues with vertex density.

 This trail must show a colour change, from bright (Almost white) orange to dark red. To achieve this

gradient, we generate 2 quads stacked on top of each other. We start off by creating vertices on

both points of the edge, giving them the bright colour, as the fire will be hottest at this point. From

here, we extrude a quad along the velocity vector with a colour that is lerped between the bright

colour, and the dark red colour. We multiply the velocity vector with a velocity multiplier, so the

user can easily change the length of the trail. We also multiply it with the dot product, so edges with

lower angles will generate a longer trail. Lastly, we multiply it with the actual velocity, and the

occlusion.

This will give us an orange trail, with a red end. However, we want to be able to change the length of

the red, so we add another quad that just uses the red colour. We multiply the previous vertex

position with a modifier, so the user can set the length of the dark red.

This is what that code looks like.

This is what the effect looks like in the engine.

This is starting to look like the desired effect, however, we need to add a random length to the trail,

so it doesn’t look so uniform, and we need to change that length periodically, to “animate” the fire.

To achieve this, I use a perlin noise texture to make it random. For every vertex, I sample the

normalized vertex position, and use the x and y coordinates of those as the uv coordinates in my

sampler. This makes the fire more random at the tips, making it seem more like fire. However, this

doesn’t include the animation effect. To achieve that affect, I add a variable which I sum up on top of

my UV coordinates. In the scene, I add a small value to this variable in every update tick, making the

texture wrap around itself constantly, like a treadmill. This makes the fire jump up and down,

animating it. Due to the limitations of a PDF, I cannot show the animation, however, here’s how I did

it with a picture of the variation in height.

With the animation added, that concludes the geometry pass of the shader.

Conclusion
This concludes the shader. What I like about this shader is that you can expand on it a ton. You can

add more pixel shaders, like normal maps or environment maps, but you can also expand on the

geometry shader. I think the shader at its current state forms a solid base, but improvements can be

made. For example, sometimes some of the fire still goes through the model, this is something that

can be fixed with more advanced math, you can also add a variable to make the trail bounce off the

front first, sideways, instead of immediately going along the airstream. I think the random height of

the fire could also use some tweaking, as right now it seems obvious that it’s pseudo-random.

Overall this was a very pleasant shader to work on. It was complicated, but this made it a technical

challenge, but a satisfying challenge to complete. The biggest problem I ran into is finding a way to

detect the edge of the model, but the developers of KSP gave me some ideas to solve this.

Here’s a side-by-side comparison

Sources
https://nasa3d.arc.nasa.gov/detail/orion-capsule

http://www.spaceflightinsider.com/missions/human-spaceflight/nasa-releases-video-orions-fiery-

reentry-earths-atmosphere/

https://www.youtube.com/watch?v=-FsvCAc4iTU

http://www.esa.int/var/esa/storage/images/esa_multimedia/images/2000/08/atmospheric_re-

entry_demonstrator_-_artist_s_impression/9221109-5-eng-GB/Atmospheric_Re-

entry_Demonstrator_-_artist_s_impression.jpg

https://upload.wikimedia.org/wikipedia/commons/thumb/8/87/Apollo_cm.jpg/220px-

Apollo_cm.jpg

https://youtu.be/mXTxQko-JH0?t=24m30s

https://www.youtube.com/watch?v=LMI8PVwEf88

https://nasa3d.arc.nasa.gov/detail/orion-capsule
http://www.spaceflightinsider.com/missions/human-spaceflight/nasa-releases-video-orions-fiery-reentry-earths-atmosphere/
http://www.spaceflightinsider.com/missions/human-spaceflight/nasa-releases-video-orions-fiery-reentry-earths-atmosphere/
https://www.youtube.com/watch?v=-FsvCAc4iTU
http://www.esa.int/var/esa/storage/images/esa_multimedia/images/2000/08/atmospheric_re-entry_demonstrator_-_artist_s_impression/9221109-5-eng-GB/Atmospheric_Re-entry_Demonstrator_-_artist_s_impression.jpg
http://www.esa.int/var/esa/storage/images/esa_multimedia/images/2000/08/atmospheric_re-entry_demonstrator_-_artist_s_impression/9221109-5-eng-GB/Atmospheric_Re-entry_Demonstrator_-_artist_s_impression.jpg
http://www.esa.int/var/esa/storage/images/esa_multimedia/images/2000/08/atmospheric_re-entry_demonstrator_-_artist_s_impression/9221109-5-eng-GB/Atmospheric_Re-entry_Demonstrator_-_artist_s_impression.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/8/87/Apollo_cm.jpg/220px-Apollo_cm.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/8/87/Apollo_cm.jpg/220px-Apollo_cm.jpg
https://youtu.be/mXTxQko-JH0?t=24m30s
https://www.youtube.com/watch?v=LMI8PVwEf88

